Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenomic Interfaces: Bridging Biological Networks With the Electronic Digital World.

red PhyB/PIF6 human neural progenitor cells Transgene expression Cell differentiation
IEEE, 11 Jun 2019 DOI: 10.1109/jproc.2019.2916055 Link to full text
Abstract: The development of optical nano-bio interfaces is a fundamental step toward connecting biological networks and traditional electronic computing systems. Compared to conventional chemical and electrical nano-bio interfaces, the use of light as a mediator enables new type of interfaces with unprecedented spatial and temporal resolutions. In this paper, the state of the art and future research directions in optogenomic interfaces are discussed. Optogenomic interfaces are light-mediated nano-bio interfaces that allow the control of the genome, i.e., the genes and their interactions in the cell nucleus (and, thus, of all the cell functionalities) with (sub) cellular resolution and high temporal accuracy. Given its fundamental role in the process of cell development, the study is focused on the interactions with the fibroblast growth factor receptor 1 (FGFR1) gene and the integrative nuclear FGFR1 signaling (INFS) module in stem cells and in neuronal cells, whose control opens the door to transformative applications, including reconstructive medicine and cancer therapy. Three stages of optogenomic interfaces are described, ranging from already experimentally validated interfaces activating broad cellular responses and expressing individual genes to more advanced interfaces able to regulate and correct DNA topology, chromatin structure, and cellular development.
2.

Optogenetic brain interfaces.

blue BLUF domains Cryptochromes Review
IEEE Rev Biomed Eng, 12 Dec 2013 DOI: 10.1109/rbme.2013.2294796 Link to full text
Abstract: The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.
Submit a new publication to our database